الرياضيات

الصف التاسع - كتاب التمارين
الفصل الدراسي الأول

فرقة التأليف

د. عمر محمد أبو غليون (رئيسًا)
هبة ماهر التميمي
إبراهيم أحمد عمايرة
سميرة حسن أحمد

الناشر: المركز الوطني لتطوير المناهج

النور: المركز الوطني لتطوير المناهج استقبل آرائكم وملحوظاتكم على هذا الكتاب عن طريق الطرق الآتية:

06-5376262 / 237
06-5376266
P.O.Box: 2088 Amman 11941

@nccdjor feedback@nccd.gov.jo
www.nccd.gov.jo
قررت وزارة التربية والتعليم تدريس هذا الكتاب في مدارس المملكة الأردنية الهاشمية جميعها، بناءً على قرار المجلس الأعلى للمركز الوطني لتطوير المناهج في جلسته رقم (4/2022)، تاريخ 19/6/2022م، وقرار مجلس التربية والتعليم رقم (44/2022) تاريخ 6/7/2022م بدءًا من العام الدراسي 2022 / 2023م.

المملكة الأردنية الهاشمية
رقم الإيداع لدى دائرة المكتبة الوطنية
(2023/2/785)

الأردن. المركز الوطني لتطوير المناهج
كتاب التمارين: الصف التاسع: الفصل الدراسي الأول/ المركز الوطني لتطوير المناهج. - عمّان: المركز، 2023
(52) ص.
ر.إ: 2023/785

الوصفات: / تطوير المناهج / المقررات الدراسية / مستويات التعليم / المناهج

يتحمل المؤلف كامل المسؤولية القانونية عن محتوى مصنفه، ولا يعتبر هذا المصنف عن رأي دائرة المكتبة الوطنية.

All rights reserved. No part of this publication may be reproduced, sorted in retrieval system, or transmitted in any form by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Barnard’s Inn, 86 Fetter Lane, London, EC4A 1EN.

British Library Cataloguing -in- Publication Data
A catalogue record for this publication is available from the Library.
أعزائنا الطلبة...

يحتوي هذا الكتاب تمرين متنوع متعدد الأهداف لتعزيز فهمك في استعمال مراجع إضافية، وهي استنادًا للتمارين الوراثة في كتاب الطالب، ويتطلب إلى ممارستكم على ترسيخ المناهج التي تعلمناها في كل درس، وتميّز مهاراتكم العملية.

لقد يقتضي الycle المعلمة بعض تمارين هذا الكتاب واجبًا منزليًا، ويتطلب البقاء تعلموها عند الاستعداد للفحوصات النهائية واختبارات نهاية الفصل الدراسي.

نستطيع المناهج التي عنوانها (أستعد لدراسة الوحدة) في بداية كل وحدة على مراجعة المناهج التي درستها سابقاً؛ مما يعزز تعلمتكم على متابعة التعلم في الوحدة الجديدة بالضفة والوراء.

يوجد نزاع كائن إذا كان تمرين كتابة إجابته، وإذا لم يتسع هذا الفراغ لتناول الكتاب جميعاً يمكّنكم استعمال دفتر إضافي لكتابتها.

تميّز لكم تعليمًا ممتعًا ومستقبلاً.

المؤسسة الوطنية لتطوير المناهج
قائمة المحتويات

الوحدة 1 المُتباينات الخطيَّة

<table>
<thead>
<tr>
<th>الدرس</th>
<th>المحتوى</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>أستعدّ لدراسة الوحدة</td>
</tr>
<tr>
<td>11</td>
<td>المجموعات والفترات</td>
</tr>
<tr>
<td>12</td>
<td>حل المُتباينات المُركَّبة</td>
</tr>
<tr>
<td>13</td>
<td>حل مُعادلات القيمة المطلقة وُمُتبايناتها</td>
</tr>
<tr>
<td>14</td>
<td>تمثيل المُتباينات الخطيَّة بمُتغيّرمين بَيانياً</td>
</tr>
</tbody>
</table>

الوحدة 2 العلاقات والاقترانات

<table>
<thead>
<tr>
<th>الدرس</th>
<th>المحتوى</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>أستعدّ لدراسة الوحدة</td>
</tr>
<tr>
<td>22</td>
<td>الاقترانات</td>
</tr>
<tr>
<td>23</td>
<td>تفسير التمثيلات البِيانيَّة للعلاقات</td>
</tr>
<tr>
<td>25</td>
<td>الاقتران التربيعي</td>
</tr>
<tr>
<td>26</td>
<td>التحويلات الهندسيَّة للاقترانات التربيعيَّة</td>
</tr>
<tr>
<td>الوحدة 3 حل المعادلات</td>
<td>الوحدة 4 الهندسة الإحصائية</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>الدرس 1 حل المعادلات التربيعية بيانياً</td>
<td>الدرس 1 المسافة في المستوى الإحصائي</td>
</tr>
<tr>
<td>الدرس 2 حل المعادلات التربيعية بالتحليل (1)</td>
<td>الدرس 2 المسافة بين نقطة ومُستقيم</td>
</tr>
<tr>
<td>الدرس 3 حل المعادلات التربيعية بالتحليل (2)</td>
<td>الدرس 3 البرهان الإحصائي</td>
</tr>
<tr>
<td>الدرس 4 حل المعادلات التربيعية بإكمال المربع</td>
<td>أوراق الرسم البياني</td>
</tr>
<tr>
<td>الدرس 5 حل المعادلات التربيعية باستعمال القانون العام</td>
<td>أوراق مربّعات</td>
</tr>
<tr>
<td>الدرس 6 حل معادلات خاصة</td>
<td>أوراق الرسم البياني</td>
</tr>
<tr>
<td>استعد لدراسة الوحدة</td>
<td>استعد لدراسة الوحدة</td>
</tr>
<tr>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
</tr>
<tr>
<td>34</td>
<td>51</td>
</tr>
<tr>
<td>35</td>
<td>أوراق مربّعات</td>
</tr>
</tbody>
</table>
تحويل العبارات اللفظية إلى متماثلات (الدرس 1)

أكتب متماثلة تمثل كل جملة مما يأتي:

1. عددًا أصغر من 10
2. عددًا أصغر من 7 أكبر من 120
3. عددًا مضاف إليه 6 أكبر من 24
4. عددًا مقسم على 2 لا يزيد على 10

مثال: أكتب متماثلة تمثل كل جملة مما يأتي:

(ا) خمسة أمثال عدد أقل من 100

أختار متغيرًا ليكن ممثلاً للمعدد.

أكتب متماثلة: 100 > 5x

(ب) عدد مضاف إليه 6 لا يقل عن 18

أختار متغيرًا ليكن ممثلاً للمعدد.

أكتب متماثلة: y + 6 ≥ 18

بين الجدول الأمثلات اللفظية المختلفة لكل من الرموز ≤، ≥، >، < بالكلمات:

<table>
<thead>
<tr>
<th>الرمز</th>
<th>بالكلمات</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>أصغر من</td>
</tr>
<tr>
<td>></td>
<td>أكبر من</td>
</tr>
<tr>
<td>≤</td>
<td>أصغر من أو يساوي</td>
</tr>
<tr>
<td>≥</td>
<td>أكبر من أو يساوي</td>
</tr>
</tbody>
</table>

استعدًّ لدراسة الوحدة

الوحدة 1: المتماثلات الخطية

أختير معلوماتي قبل البدء بدراسة الوحدة، وفي حال عدم تأكيدي من الإجابة استعين بالأمثلة المحلول.

(الدرس 1)
أَسْتَعْدِ لِدِرَاسَةِ الْوَاحِدَةِ

الوحدة 1: المتباينات الخطيَّة

حل المعادلة الخطيَّة بمتغير واحد

أحل كلٍّ مِن المعادلات الآتية:

5. \(x + 4 = -2 \)
6. \(8 = y - 2 \)
7. \(-4.5 + u = 6.5 \)
8. \(4m = -24 \)
9. \(\frac{n}{5} = -1 \)
10. \(7.5 = \frac{h}{-2} \)
11. \(2(4x + 1) = 16 \)
12. \(3 - 2b = -5(b + 2) - 1 \)

مثال: أجل المعادلة \(3x + 4 = 4x + 17 \)

المعادلة الأصلية

خاصية التوزيع

أطرح 8 من طرف معادلة

أطرح 4x من طرف معادلة

أقسم طرف معادلة على 2

أبسيط

التعبير عن مسألة حياتية بمعادلة، ثم حلها

هَلا أصغرِ بـ 7 سنوات من ريم، وسليم عمره يساوي ضعف عمر ريم. إذا كان مجموع عُمْرَ هَلا ورَيم مساويًا لعَمَر هَلا مطروحًا من 57، فاكتب معايدة، ثم أحلِّها لأجد عُمر كل واحدٍ منهم.

سليم مطروحًا من 57، فأكتب معادلة، ثم أحلِّها لأجد عُمر كل واحدٍ منهم.

قالٌ: يرغب علاء في شراء تّلسكوب لمشاهدة النجوم ليلاً، فإذا كان نسم التّلسكوب 92، وكان مع علاء 32 JD، فأكتب معادلة يمكن بحلها إيجاد المبلغ الذي يدخره علاء شهريًا، ليتمكن من شراء التّلسكوب خلال 4 أشهر، ثم أحلِّها.
مثال: لدى علي 4 علبة مليئة بالأقلام، وقلمان إضافيّان، ولدى خالد علبتان مليئتان بالأقلام و10 أقلمًا إضافيّين. كم قلمًا في العبّة الواحدة إذا كان لدى كل منهما العدد نفسه من الأقلم؟

ليكن عدد الأقلم في كل علبة هو x. إذن، لدى علي $4x + 2$ قلمًا، ولدى خالد $2x + 10$ قلمًا، وبحسب ذلك لدى كل من علي وخالد العدد نفسه من الأقلم، فإن $4x + 2 = 2x + 10$.

أحل المعادلة لأجد قيمة المتغير الذي يمثل عدد الأقلم في كل علبة:

المعادلة الأصلية:

$$4x + 2 = 2x + 10$$

آنطق $2x$ من كلا الطرفين

$$2x = 8$$

آنطق 2 من كلا الطرفين

$$x = 4$$

إذن، تحتوي كل علبة على 4 أقلم.

تحقق من صحة الحل:

$$4(4) + 2 = 2(4) + 10$$
$$16 + 2 = 8 + 10$$
$$18 = 18 ✓$$

حل المتباينات الخطية (الدرس 1)

أختر كل من المتباينة ممّا يأتي، وأُمر الحل على خط الأعداد:

15. $y + 5 < 11$
16. $-1 \geq 3 + b$
17. $-4x \leq 12$
18. $144 < 12d$
19. $3x - 2 < 13$
20. $x - 4 - 7x > 1 - 6x$
أَسْتَعَدْ لِدِرَاسَةِ الْوَاحِدَةِ

الوحدة 1: المتباینات الخطيّة

مثال: أَحْلَّ المَتَبَيْنَةُ: $11 + 2x = 5 + 6x$، وأَمثَّلَ الحلّ على خَطِّ الأَعْدَاد:

المَتَبَيْنَةُ الأصليّةُ

جمعّ 5 لطرفّي المَتَبَيْنَة

طرحّ 2x من طرفي المَتَبَيْنَة

قسمّ طرف المَتَبَيْنَة على 4

بالتبسيط

إِذَنَّ، الحلّ هو $x \geq 4$، وَتمثِيلُه على خَطِّ الأَعْدَادٍ على النَّحو الآتي:

القيمة المطلقةً (الدرس 3)

أَجُد قِيمَةً كُلٌّ مِن المَتَبَيْنَات الآتية:

21 $|17|$
22 $|-32| - 10$
23 $4 + |12|$
24 $3 + |-7|$
25 $|-8| + |22|$
26 $|-9| - 2$

مثال: أَجُدُ القيمة المطلقة لكل عدد ماً يأتي:

(الف) العدد 2

بِمَا أنّ المسافة بين العدد 2
والصّفرّ هي 2، فإنّ $|2| = 2$.

(ب) العدد 3

بِمَا أنّ المسافة بين العدد 3
والصّفرّ هي 3، فإنّ $|3| = 3$.
استعد لدراسة الوحدة

تمثيل المعادلات الخطية بمتغيرات بيانية (الدرس 4)

امثل كل معادلة بما يأني بيانياً باستعمال المقطع x والمقطع y:

10

27 \(y = -1 \)
28 \(y - x = 8 \)
29 \(3x + 2y = 15 \)
30 \(x = 4 \)

مثال: أمثل المعادلة 6:

المقطع x والمقطع y

الخطوة 1

أجد المقطع x والمقطع y

لإيجاد المقطع x، أوضع 0 = y، ثم أحل المعادلة الناتجة لأجد قيمة x.

المعادلة الأصلية

المعادلة الأصلية

بتعرض 0 = y

بتعرض 0 = x

نقسم كلا الطرفين على 3

نقسم كلا الطرفين على 2

بالتبسيط

بالتبسيط

إذن، المقطع x هو 2، والمقطع y هو 3.

المخططة 2

امثل نقطتي تقاطع المستقيم مع المحورين الإحداثيين في المستوى الإحداثي، ثم أرسم مستقيماً يصل بين النقطتين.

بما أن المقطع x هو 2، فإن المستقيم يقطع المحور x في النقطة (0, 2).
وبما أن المقطع y هو 3، فإن المستقيم يقطع المحور y في النقطة (3, 0).
نم أرسم مستقيماً يصل بينهما.
المجموعات والفترات
Sets and Intervals

أعبر عن كل من المجموعات الآتية، باستخدام طريقة سرد العناصر، وطريقة الصفة المميزة:

1. مجموعة الأعداد الكبيرة التي تقل عن 17
2. مجموعة الأعداد الكبيرة التي تقل عن 0
3. مجموعة حل المعادلة 7x + 28 = 0
4. مجموعة الأعداد الكبيرة التي تزيد على 200
5. مجموعة الأعداد الصحيحة السالبة
6. مجموعة الأعداد الصحيحة السالبة

أكتب مجموعة حل كل متباينة مما يأتي باستخدام الصفة المميزة:

7. 6z - 15 > 4z + 11
8. 3y + 6 < 2y - 8
9. \(\frac{x}{2} + 4 < 7 \)
10. 3(x - 2) ≥ 15
11. -5 ≤ 4x + 7
12. 5x - 7 > 3x + 4

أكتب كل مجموعة مما يأتي بطريقة سرد العناصر، ثم حدد ما إذا كانت خالية، أم مفردة، أم متتالية، أم غير متتالية:

13. \(A = \{ x \mid x \in \mathbb{Z}, x < 5 \} \)
14. \(B = \{ x \mid 5x - 1 = 0 \} \)
15. \(C = \{ x \mid x < 7, x \in W \} \)
16. \(D = \{ x \mid x = k - 1, k \in W, k < 11 \} \)
17. \(E = \{ x \mid x = 8k, k \in W, x > 20 \} \)
18. \(T = \{ x \mid x = 2k, k \in Z, x > 10 \} \)

أكتب المتباينة الممثّلة على خط الأعداد في كل مما يأتي، ثم أعبر عنها باستخدام رمز الفترة:

19.
20.
21.
22.

أكتب كل متباينة مما يأتي باستخدام رمز الفترة، ثم أمثلها على خط الأعداد:

23. \(x < 15 \)
24. \(x > -5 \)
25. \(x \leq -10 \)
26. \(x \geq 30 \)
الدرس 2
حل المتباينات المركبة
Solving Compound Inequalities

أصل المتباينة بتمثيلها على خط الأعداد في كل مما يأتي:

1. \(x < -2\) or \(x > 5\)
2. \(-2 < x < 5\)
3. \(x < -2\) or \(x < 5\)
4. \(x < -2\) and \(x < 5\)

أكتب المتباينة تمثل كل جملة مما يأتي، ثم أمثلها على خط الأعداد:

5. عدد يقع بين 5 و 7
6. ناتج 4 مع ثلاثة أمثال عدد يقع بين 8 و 10
7. نصف عدد أكبر من 0 وأقل من أو يساوي 1
8. عدد على الأقل 2 وعلى الأكثر 9

أجد مجموعة حل كل متباينة مما يأتي، ثم أمثلها على خط الأعداد:

9. \(3b - 1 < 7\) or \(4b + 1 > 9\)
10. \(4 + k > 3\) or \(6k < -30\)
11. \(7 - 3c ≥ 1\) or \(5c + 2 ≥ 17\)
12. \(6 - a < 1\) or \(3a ≤ 12\)
13. \(7 ≤ 3 - 2p < 11\)
14. \(1.5 < w + 3 < 6.5\)
15. \(-6 ≤ 3x + 9 < 21\)
16. \(-9 < -2s - 1 ≤ -7\)

اكتشف الخطأ: أكتشف الخطأ في حل المتباينة المركبة الآتية، وأصححه:

\[x - 2 > 3\] or \[x + 8 < -2\]

\(x > 5\) or \(x < -10\)
الدرس 3
حل معادلات القيمة المطلقة ومُتبايناتها

أصل المُتميزة تمثلها على خط الأعداد في كل ما يأتي:

1. $|x + 2| \geq 1$
2. $|x + 2| \leq 1$
3. $|x + 2| > 1$

أكتب مثليتها على خط الأعداد في كل ما يأتي:

أُكتب مثليتها تمثل كل جملة مما يأتي، ثم أمثلها على خط الأعداد:

4. المسافة بين عدد 2 و1
5. المسافة بين عدد والصفر على الأقل
6. أصنف المعادلات أدناه دون حلها إلى واحدة من الفئات الآتية:

<table>
<thead>
<tr>
<th>ليس لها حل</th>
<th>لها حل واحد</th>
<th>لها حلان</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>x-2</td>
<td>+6=0$</td>
</tr>
<tr>
<td>$</td>
<td>x-1</td>
<td>+4=4$</td>
</tr>
</tbody>
</table>

أحل كل من المعادلات والمُتباينات الآتية:

7. $|x - 8| = 5$
8. $2|x+3|=8$
9. $|5x - 8| + 14 = 12$
10. $|8 - (x - 1)| \leq 9$
11. $\frac{2-3x}{5} \geq 2$
12. $|x - 6| + 4 > 1$

اكتشف الخطأ: أكتشف الخطأ في حل معادلة القيمة المطلقة الآتية، وأصححه:

$|2x - 1| = -9$
$2x - 1 = -9$ or $2x - 1 = -(-9)$
$x = -4$ or $x = 10$
$x = 5$
تمثيل المتباينات الخطية بمتغيرين بيانيًا

Graphing Linear Inequalities in Two Variables

1. \(y > x + 5 \)

2. \(y \leq -\frac{1}{2} x + 1 \)

3. \(y \geq -x - 5 \)

4. \(y < 4 \)

5. \(x > 3 \)

6. \(x \leq -1 \)

7. \(3y > 6 + 2x \)

8. \(y \geq -x + 1 \)

9. \(x + 2y < 4 \)
الدرس 4

تمثيل المتباينات الخطية بمتغيرين بيانياً

Graphing Linear Inequalities in Two Variables

أحدُ إذا كان الزوج المرتب يمثل حلًا للمتباينة أم لا في كل مما يأتي:

10. \(x + y < 7, (2, 11) \)
11. \(x < 3y, (-9, 2) \)
12. \(-4x-8y \leq 15, (-6, 3) \)
13. \(-x - 6y > 12, (-1, 3) \)
14. \(5x + 7y \leq 10, (-1, 2) \)
15. \(8x + y > -6, (0, -8) \)

أصل المتباينة بمثيلها البياني في كل مما يأتي:

16. \(2y + x \leq 6 \)
17. \(\frac{1}{2} x - y > 4 \)
18. \(y > 3 + \frac{1}{2} x \)
19. \(4y + 2x > 16 \)

يبيع متجر على شبكة الإنترنت كاميرات رقمية وهواتف محمولة. إذا كان المتجر يقدّم خصمًا مقداره 5 عن كل كاميرا يبيعها، و 10 عن كل هاتف يبيعه، وكان يرغب في تقديم خصم مقداره 30 على الأكثر على مبيعاته من الكاميرات والهواتف، فإذا باغ x من الكاميرات، و y من الهواتف، أكتب متباينة خطية بمتغيرين تمثل عدد الكاميرات والهواتف التي يجب عليه بيعها لتحقيق هدفه، ثم أمثلها في المستوى الإحداثي المجاور.

\(y \)
\(9 \)
\(8 \)
\(7 \)
\(6 \)
\(5 \)
\(4 \)
\(3 \)
\(2 \)
\(1 \)
\(0 \)
\(1 \)
\(2 \)
\(3 \)
\(4 \)
\(5 \)
\(6 \)
\(7 \)
\(8 \)
\(9 \)
\(x \)
الوحدة 2: العلاقات والاقترانات

أمستعد لدراسة الوحدة

اختبر معلوماتك قبل البدء بدراسة الوحدة، وفي حال عدم تأكيدي من الإجابة أستعني بالمثال المحلول.

تمثيل الاقتران الخطى بيانياً (الدرس 1)

نمثل كل اقتران ممّا يأتي بيانياً:

\[y = x + 4 \]
\[y = 3x - 1 \]
\[3y = 9 - 6x \]
\[5x - 2y = 10 \]

مثال:
نمثل الاقتران \(y = 3x + 1 \) بيانياً.

أختار بعض قيم المدخلات (قيمة \(x \)), ولتكن: 2, 1, 0, -1

أنشئ جدول لإيجاد القيمة المخرجات المقابلة لهذه المدخلات:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(3x + 1)</th>
<th>(y)</th>
<th>((x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>3(-1) + 1</td>
<td>-2</td>
<td>(-1, -2)</td>
</tr>
<tr>
<td>0</td>
<td>3(0) + 1</td>
<td>1</td>
<td>(0, 1)</td>
</tr>
<tr>
<td>1</td>
<td>3(1) + 1</td>
<td>4</td>
<td>(1, 4)</td>
</tr>
<tr>
<td>2</td>
<td>3(2) + 1</td>
<td>7</td>
<td>(2, 7)</td>
</tr>
</tbody>
</table>

أمثل الأزواج المرتبة في المستوى الإحداثي، ثم أرسم مستقيماً يمر به جميعاً.

إيجاد قيمة مقدار جبري عند قيمة مطلقة (الدرس 1)

أجد قيمة كل من المقادير الجبرية الآتية عند القيمة المطلقة:

\[y^2 + (4 - 2y), y = 5 \]
\[(2b - b^2) - d ÷ 4, b = 6, d = 8 \]
\[(3n^2 + n^2) + 12 ÷ m, n = 5, m = 4 \]
\[8d - d^2 + 1, d = 3 \]
\[12 × d ÷ d^2 - 1, d = -6 \]
\[(3n - 1)^2 + 12 - m, n = 2, m = -1 \]
أعد لدراسة الوحدة

الوحدة 2: العلاقات والاقترانات

مثال: أوجد قيمة كل من المقادير الآتية:

a) \(x^2 - (8 + x), \ x = 5\)

\[5^2 - (8 + 5) = 25 - 13 = 12\]

b) \(y^2 + 4y, \ y = -6\)

\[(-6)^2 + 4 \times (-6) = 36 + (-24) = 12\]

c) \((p^2 - 4p) - 5 ÷ d, \ p = 3, \ d = -1\)

\[(3^2 - 4 \times 3) - 5 ÷ (-1) = (9 - 12) - 5 ÷ (-1) = (-3) - 5 ÷ (-1) = (-3) - (-5) = -3 + 5 = 2\]

إيجاد ميل الخط المستقيم المار بنقطتين (الدرس 2)

11 (3, 3), (5, 7)
12 (6, 1), (4, 3)
13 (-2, -6), (-2, 6)
14 (5, -7), (0, -7)
15 (-1, 0), (0, -5)
16 (4, 1), (12, 8)
17 (-1, 2), (3, 5)
18 (-1, -2), (-4, 1)
19 (1, 2), (-3, 2)
20 (1, 5), (1, -4)
استعد لدراسة الوحدة

الوحدة 2: العلاقات والاقترانات

مثال: أجد ميل المستقيم المار بكل نقطتين ممّا يأتي:

a) (1, 2), (4, 5)

صيغة الميل

اعوّض عن (1, 2), (4, 5) في

إذن، ميل المستقيم هو 1

b) (1, 2), (4, 5)

صيغة الميل

اعوّض عن (0, 1), (3, -3) في

إذن، ميل المستقيم هو -\(\frac{4}{3}\)

c) (1, 3), (4, 3)

صيغة الميل

اعوّض عن (1, 3), (4, 3) في

إذن، ميل المستقيم هو 0

d) (2, 3), (2, -1)

صيغة الميل

اعوّض عن (1, 3), (2, -1) في

إذن، ميل هذا المستقيم غير معروف.
استعد لدراسة الوحدة

الوحدة 2: العلاقات والاقترانات

تفسير التمثيلات البيانية (الدرس 2)

يبيّن التمثيل البياني المجاور المتوسط تكلفة تشغيل ثلاجة (بالدينار) أشهر عدة.

أجد تكلفة تشغيل الثلاجة مدة 3 أشهر.

أجد معدل تغيير تكلفة تشغيل الثلاجة بالنسبة إلى الزمن، ثم أوضح ماذا يمثل.

مثال: بيت التمثيل البياني المجاور طول زنبرك l بالسنتيمترات، على تعلق جسم كتلة m غرام به.

1. أجد طول الزنبرك قبل تعلق أي كتلة به.

طول الزنبرك قبل تعليق أي كتلة به 5 cm، وهي القيمة التي تقابل الكتلة 0g في التمثيل.

أجد معدل تغير طول الزنبرك بالنسبة إلى كتلة، ثم أبين ماذا يمثل.

2. لإيجاد معدل التغيير أحد ميل المستقيم الذي يمثل العلاقة بين الكتلة وطول الزنبرك.

أستخدم النقاطين (5, 0) و (15, 80) لإيجاد ميل المستقيم.

صيغة الميل

الميل هو

أو

و عن

إذن، ميل المستقيم هو

ويزيد بمقدار

cm لكل غرام يضاف إليه.
الوحدة 2: العلاقات والاقترانات

- إيجاد صورة شكل في المستوى الإحداثي تحت تأثير الانسحاب (الدرس 4)

أعدِّ لدراسة الوحدة

- إيجاد صورة شكل في المستوى الإحداثي تحت تأثير الانسحاب (الدرس 4)

أنتِ اخترُ الشكل المجاور على ورقة رمبات، ثمَّ أعدُّ إحداثيات رؤوسه تحت تأثير الانسحاب مقداره وحدتان إلى اليسار و 4 وحدات إلى الأسفل.

أرسِم المربع الذي إحداثيات رؤوسه (0, 0)، (2, 0)، (2, 2)، (0, 2).

إحداثيات رؤوسه تحت تأثير الانسحاب 5 وحدات إلى اليمين، و وحدات إلى الأعلى.

مثال: أرسم المثلث الإحداثيات رؤوسه (A(-2, 4)، B(0, 1)، C(3, 2))، ثمَّ أعدُّ إحداثيات رؤوسه تحت تأثير الانسحاب 3 وحدات إلى الأسفل.

أرسِم الشكل و صورته.

خطوة 1: أكتب إحداثيات الرؤوس.

(x، y) → (x+4، y+3)

A(-2، 4) → A’(2، 7)

B(0، 1) → B’(4، 4)

C(3، 2) → C(7، 5)

خطوة 2: أرسِم الشكل و صورته.

- إيجاد صورة شكل في المستوى الإحداثي تحت تأثير انعكاس حول المحور x (الدرس 4)

أرسِم صورة الشكل بالانعكاس حول المحور x، ثمَّ أعدُّ إحداثيات رؤوسه:

A(-4، -3)، B(-4، -1)، C(-1، 1)، D(-2، -2).

مثلث الإحداثيات رؤوسه: ABC

أكتب إحداثيات صورًّ رؤوسه بالانعكاس حول المحور x، ثمَّ أرسِم المثلث و صورته.
استعد لدراسة الوحدة

الوحدة 2: العلاقات والاقترانات

مثال: $L(5, 5), M(6, 2), N(3, 1), K(2, 5)$

الشكل $LMNK$ أكتب إحداثيات رؤوسه هي: $(5, 5), (6, 2), (3, 1), (2, 5)$

أي إن، إحداثيات صورة الروس هي: $(5, -5), (6, -2), (3, -1), (2, -5)$

إيجاد صورة شكل في المستوى الإحداثي تحت تأثير انعكاس حول المحور y

أكتب إحداثيات صورة رؤوس كل شكل مماثل يأتي بالانعكاس حول المحور y، ثم أمثل الشكل وصورةه:

x:

$P(0, 0), Q(-2, 0), R(-1, 3), S(-4, 3), R(-2, 5), V(0, 5)$

شكل $PQRSTV$ أكتب إحداثيات رؤوسه هي: $(0, 0), (-2, 0), (-1, 3), (-4, 3), (-2, 5), (0, 5)$

أي إن إحداثيات الصورة بالانعكاس حول المحور y هي: $(-x, y), (0, 0), (2, 0), (1, 3), (4, 3), (2, 5)$

$P'(0, 0), Q'(2, 0), R'(1, 3), S'(4, 3), T'(2, 5), V'(0, 5)$

المثلث $L(5, 5), M(6, 2), N(3, 1)$: مثلاً، أكتب إحداثيات L، M، N، K:

x:

L, M, N, K:

$L(5, 5), M(6, 2), N(3, 1), K(2, 5)$

$M(6, 2), N(3, 1), K(2, 5)$: مثلاً، اكتب إحداثيات الصورة رؤوسه

أي إن، إحداثيات الصورة رؤوسه هي: $(5, -5), (6, -2), (3, -1), (2, -5)$

\[
\begin{align*}
(x, y) & \rightarrow (x, -y) \\
L(5, 5) & \rightarrow L'(5, -5) \\
M(6, 2) & \rightarrow M'(6, -2) \\
N(3, 1) & \rightarrow N'(3, -1) \\
K(2, 5) & \rightarrow K'(2, -5)
\end{align*}
\]
الدرس ١

العلاقات والاقترانات

أحدَّدُ المجالَ والمدى لكل علاقةً مما يأتي، ثمٌّ أحددُ ما إذا كانت تمثل اقترانًا أم لا:

١ \{(13, 5), (−4, 12), (6, 0), (13, 10)\}

٢ \{(9.2, 7), (9.4, 11), (9.5, 9.5), (9.8, 8)\}

٣

<table>
<thead>
<tr>
<th>x</th>
<th>−3</th>
<th>−1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>3</td>
<td>−4</td>
<td>5</td>
<td>−2</td>
<td>3</td>
</tr>
</tbody>
</table>

٤

<table>
<thead>
<tr>
<th>x</th>
<th>5</th>
<th>2</th>
<th>−7</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

٥

٦

٧

٨

٩

١٠

١١

١٢

١٣

١٤

أكتب اقترانًا يمثل حجم كل من الأشكال بدلاً بالعلاقة المفقودة، ثمٌّ أحددُ ما إذا كان الاقتران خطيا أم لا:

١١

١٢

١٣

أكتشف الخطأ: يقول زياد: يمثل التمثيل البياني المجاور اقترانًا منفصلًا؛ لأنه بدأ بِنقطة وانتهى بِنقطة. أكتشف خطأ زياد، وأصححه.
الدرسَ 2

تسريع التمثيلات البيانيّة للعلاقَاتِ

Analyzing Graphs of a Relation

<table>
<thead>
<tr>
<th>العمرُ (عامٌ)</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>الطولُ (cm)</td>
<td>152</td>
<td>162</td>
<td>168</td>
<td>170</td>
<td>170</td>
</tr>
</tbody>
</table>

اليومُ الجدولُ المجاورُ طول سالم من عمر 12 سنة إلى عمر 20 سنة:

1. أصلُ البياناتِ التي في الجدول بِاليانيَّ.

2. في أي سنين كانت زيادة طول سالم أسرع؟ أبرز إجابتي.

3. ماذا يعني الجزء الأفقي من التمثيل البياني؟

4. يبين التمثيل البياني المجاور رحلة هشام من منزله لزيارة أخيه سمير ثم عودتِه إلى المنزل.

5. كم كيلومترًا يبعد منزل هشام عن منزل سمير؟

6. في أي ساعة وصل هشام إلى منزل سمير؟ وفي أي ساعة غادر؟

7. أجد سرعة هشام في طريق عودتِه إلى المنزل.

8. يبين التمثيل البياني المجاور رحلة الأخوين زينة وعامر من منزلهما إلى المدرسة.

9. كم دقيقة تفتحي زينة للوصول من منزلها إلى المدرسة؟

10. هل غادر كل من عامر وزينة المنزل في الوقت نفسه؟ أبرز إجابتي.

ما المسافة بين زينة والمدرسة الساعة 20:8؟

ما بعد عامر عن المدرسة في اللحظة التي وصلت فيها زينة إلى المدرسة؟
تفسير التمثيلات البيانية للعلاقات

درس 2 : تفسير التمثيل البياني المجاور رحلة حافلة مسافة 20 كم

11. كم مرة توقفت الحافلة أثناء رحلتها؟ أبرز إجابتي.

12. في أي فترة زمنية كانت سرعة الحافلة أكبر؟

13. بيضن التمثيل البياني المجاور ارتفاع الماء في الوعاءين A و B حيث يتدفق الماء من الوعاء A إلى الوعاء B.

14. أجد ارتفاع الماء الابتدائي في الوعاءين.

15. أجد مقدار النفقات في ارتفاع الماء في الوعاء A خلال أول دقيقة.

16. كم من الوقت استغرق ارتفاع الماء في الوعاء B ليصبح ضعف الارتفاع الابتدائي؟

17. كم من الوقت استغرق تفريغ الوعاء A كاملا من الماء؟

18. بيضن محنى التحويل المجاور العلاقة بين وحدتي قياس الكتلة: الرطل (lb) والكيلوغرام (kg). استعمل المحنى التحويلي لأجد تحويلًا تقريبيًا لكل معاً يأتي:

<table>
<thead>
<tr>
<th>الرطل (lb)</th>
<th>الكيلوغرام (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.27</td>
</tr>
<tr>
<td>18</td>
<td>8.16</td>
</tr>
<tr>
<td>20</td>
<td>9.07</td>
</tr>
<tr>
<td>4</td>
<td>1.81</td>
</tr>
<tr>
<td>48</td>
<td>21.64</td>
</tr>
</tbody>
</table>

19. أي كيف يمكن استعمال المحنى التحويلي لتحويل 10 كغ إلى الرطل.

20. أي كيف يمكن استعمال المحنى التحويلي لتحويل 4 كغ إلى الرطل.

21. أي كيف يمكن استعمال المحنى التحويلي لتحويل 48 رطل إلى الكيلوغرام.
الدرس 3

الاقتران التربيعي

Quarteric Function

أجد رأس ومعادلة محور التماثل، والقيمة العظمى أو الصغرى ومجال وحدى كل من الاقترانات التربيعيات الآلية، ثم أمثلة بيانية:

1. \(f(x) = x^2 + 3 \)
2. \(f(x) = -x^2 - 4x - 4 \)
3. \(f(x) = x^2 + 2x + 3 \)
4. \(f(x) = x^2 - 4 \)
5. \(f(x) = -x^2 + 3 \)
6. \(f(x) = -2x^2 - 8x - 5 \)
7. \(f(x) = \frac{1}{2} x^2 - 3 \)
8. \(f(x) = \frac{1}{2} x^2 + 3 \)
9. \(f(x) = - \frac{1}{2} x^2 - 3 \)

أصل الاقتران بتمثيله البياني في كل مما يأتي:

رابطةً: يمثل الاقتران \(h = -5t^2 + 20t + 2 \) ارتفاع رمح بالساعة عن سطح الأرض، بعد 7 ثانية من رميها.

أجد مقطع المنحنى من محور y، وأفس ذه معناه في سياق المسألة.

أجد القيمة العظمى لللاقتران، وأفس ذه معناها في سياق المسألة.

أمل الاقتران بيانياً.
الدرس 4

التحويلات الهندسية للاقترانات التربيعيّة

Transformations of Quadratic Functions

أَصِفُ كيفَ يرتبطُ مُنحنى كلّ اقترانٍ ممّا يأتي بٌمُنحنى الاقتران الرئيسِ، ثمَّ أاملِله بيانًا:

1. \(h(x) = x^2 + 4 \)

2. \(g(x) = (x - 2)^2 - 3 \)

3. \(h(x) = -(x + 9)^2 \)

4. \(g(x) = x^2 - 7 \)

5. \(v(x) = \frac{1}{3} x^2 - 6 \)

6. \(u(x) = 2(x - 4)^2 + 1 \)

بِبِسِـبول: رمٍّ لاعبٌ كرةٍ الـبـيسبول في الهواء، فكان ارتفاعُها بالقدم 7. الزمنُ بالثواني بعدٍ إفلاتِ الكرةِ مِنْ يدِ اللاعبِ \(t \); حيـثُ \(h(t) = -16(t - 1)^2 + 20 \)؛ حيـثُ الزمنُ بالثواني بعدٍ إفلاتِ الكرةِ مِنْ يدِ اللاعبِ.

أَصِفُ العلاقةَ بينَ مُنحنى الاقترانِ، ثمَّ انسحابٍ إلى اليسارِ بمقدارِ وحدتَينِ، فأجبُ عَنِ الأسئلةِ الآتيةِ:

7. أكتب قاعدة الاقتران \(g(x) \) باستخدام صيغة الرأس.

8. أُجِرِّ إحداثيٌّ رأسِ القطع، ومعادلة محورِ التماثلِ، والقيمةِ العظمى أو الصغرى للاقترانِ \(g(x) \).

9. أمثل الاقترانِ \(g(x) \) بيانًا.

10. إذا كانَ مُنحنى الاقترانِ (باستعمال تضييق رأسِ لـُمَّحمى الاقتران الرئيسِ) ناتجًا من تضييق رأسِ لـُمَّحمى الاقتران الرئيسِ بمقدارٍ \(\frac{1}{4} \)، ثمَّ انسحب إلـى الأسفل بمقدارٍ 3 وحداتِ، فاجيب عَنِ الأسئلةِ الآتيةِ:
أعدّ لدراسة الوحدة

الوحدة 3: حل المعادلات

أخبر معلوماتي قبل البدء بدراسة الوحدة، وفي حال عدم تأكدي من الإجابة أستعين بالمثال المحلول.

حل المعادلات باستخدام الجذر التربيعي (الدرس 2)

حل كل من المعادلات الآتية، وأنتمحقي من صحة الحل:

1. $y^2 = 2.25$
2. $x^2 = \frac{16}{169}$
3. $t^2 = \frac{64}{100}$
4. $y^2 = 0.0144$

مثال: حل كل من المعادلات الآتية، وأنتمحقي من صحة الحل:

a) $x^2 = 144$

المعادلة الأصلية

$\Rightarrow x = \pm \sqrt{144}$

$\Rightarrow x = \pm 12$

$\Rightarrow x = -12$ عندما

$(-12)^2 = 144$

$144 = 144 \checkmark$

$\Rightarrow x = 12$ عندما

$(12)^2 = 144$

$144 = 144 \checkmark$

b) $t^2 = \frac{1}{36}$

المعادلة الأصلية

$\Rightarrow t = \pm \sqrt{\frac{1}{36}}$

$\Rightarrow t = \pm \frac{1}{6}$

$\Rightarrow x = -\frac{1}{6}$ عندما

$\left(-\frac{1}{6}\right)^2 = \frac{1}{36}$

$\frac{1}{36} = \frac{1}{36} \checkmark$

$\Rightarrow x = \frac{1}{6}$ عندما

$\left(\frac{1}{6}\right)^2 = \frac{1}{36}$

$\frac{1}{36} = \frac{1}{36} \checkmark$
الوحدة 3: حل المعادلات

تحليل الفرق بين مربعيين (الدرس 2)

أجلِل كلًّاً ممّا يأتي:

5 \(x^2 - 64 \)

6 \(4x^2 - 100 \)

7 \(64x^2 - 1 \)

مثال: أجلِل المقدار 25 - 16

\[16x^2 - 25 = (4x)^2 - (5)^2 \]

\[= (4x - 5)(4x + 5) \]

تحليل المقدار بكتابة صورة فرق بين مربعيين

ضرب المقدار الجبري (الدرس 2)

أجلِل ناتج ضرب كل ممّا يأتي باسط صورة:

8 \((x-3)(x+5)\)

9 \((12-4x)(1+2x)\)

10 \((2x-5)(4x-8x^2)\)

11 \((3x+4)^2\)

12 \((x^2 + 7)^2\)

13 \((3x-1)(3x+1)\)

مثال: أجلِل ناتج ضرب \((4-3x)(1+2x)\) باسط صورة:

\[(2x + 1)(3x - 4) = 2x(3x - 4) +1 (3x - 4) \]

\[= 6x^2 - 8x + 3x - 4 \]

\[= 6x^2 - 5x - 4 \]

تحليل بإخراج العامل المشترك (الدرس 2)

أجلِل كل مقدار جبري ممّا يأتي تحليلًا كاملاً:

14 \(3x + 21 \)

15 \(6x - 14x^2 \)

16 \(5x^3 - 10x^2 + 25x \)

مثال: أجلِل المقدار 36x^2 + 54x

الخطة: أجلِل العامل المشترك الأكبر للحديدين 36x^2 و 54x

\[36x^2 = (2 \times 2 \times 3 \times 3) \times x \]

\[54x = (2 \times 3 \times 3 \times 3 \times x) \]

أجلِل كل حديدين إلى عواملهم الأولية، وأجلِل العوامل الأولية المشتركة.
الوحدة 3: حل المعادلات

إذن، العامل المشترك الأكبر هو:

$$2 	imes 3 	imes 3 	imes x = 18x$$

الخطة 2: أخرج العامل المشترك الأكبر خارج القوس

$$36x^2 + 54x = 18(2x + 3)$$

بالإخراج العامل المشترك الأكبر

$$x^2 + bx + c$$

الدرس 3

أحلل كل ما يأتي:

17. $$x^2 + 2x - 24$$
18. $$x^2 + 16x + 28$$
19. $$x^2 - 22x + 72$$

مثال: أحلل المقدار 16 - 10x

$$x^2 - 10x + 16 = (x + m)(x + n)$$

بكتابة القاعدة

$$m = -2, n = -8$$

الدرس 6

أحلل كل مقدار جبري ما يأتي تحليلًا كاملًا:

20. $$5x^3 - 15x^2 + 4x - 12$$
21. $$5x - 10x^2 + 2y - 4xy$$

مثال: أحلل المقدار 6 + 3x + 4xy + 8y

$$4xy + 8y + 3x + 6 = (4xy + 8y) + (3x + 6)$$

بجمع العوامل المشتركة

$$= 4y(x + 2) + 3(x + 2)$$

بتحليل كل تجميع بإخراج العامل المشترك الأكبر

$$= (x + 2)(4y + 3)$$

بالإخراج العامل مشتركًا

التحليل بالتجميع
حل المعادلات التربيعيّة بيانيًا

أحلُّ كلًاً من المعادلات الآتية بيانيًا:

1. \(x^2 + 7x + 12 = 0\)

2. \(x^2 - x - 12 = 0\)

3. \(x^2 - 4x - 5 = 0\)

4. \(x^2 - 7x = -10\)

5. \(x^2 - 2x = -1\)

6. \(x^2 + 6x = -8\)

أعدادٌ صحيحانٌ مجموعههما 8 - حاصل ضربهما 8 - يمكن استخدام المعادلة

\(x^2 + 2x + 8 = 0\)

أمثل الاقتران المرتبط بالمعادلة \(x^2 + 2x + 8 = 0\) بيانيًا - يُستخدم التمثيل البياني لإيجاد العددتين.

اختيار متناسب: أي مما يأتي يُعد التمثيل البياني لمنحنى الاقتران المرتبط بالمعادلة \(x^2 - 4x + 12 = 0\):
حل المعادلات التربيعية بالتحليل (1)

Solving Quadratic Equations by Factoring (1)

1. $9m^2 - 18m = 0$
2. $x^2 + 11x + 18 = 0$
3. $x^2 - 6x + 8 = 0$
4. $x^2 - 2x - 15 = 0$
5. $x^2 + 10x = -24$
6. $a^2 - 14a + 49 = 0$
7. $16t^2 - 1 = 0$
8. $(2x - 1)^2 = 81$
9. $4(x-2)^2 = 25$
10. $t^2 + 4t - 12 = 0$
11. $x^2 + 4x + 4 = 0$
12. $27 - 3y^2 = 0$

العمود الثالث: أحل المعادلات الآتية بالتحليل:

هندسة: بيني الشخص المجاور مستطيلة مساحتها 44 cm². أجد أبعاده.

أجد عددين زوجيين متتاليين حاصل ضربهما 168.

بيني الشخص المجاور متوازي مستطيلات طوله يساوي 4 أمثال عرضه وحجمه 320 m³. أجد طوله وعرضه.

اكتشف الخطأ: حل عامر المعادلة التربيعية 39 = 33 - 2x²، كما هو مبين أداة. أكتشف الخطأ في حله، وأصححه:

$2x^2 - 33 = 39$
$2x^2 = 72$
$x^2 = 36$
$x = 6$
حل المعادلات التربيعية بالتحليل (2)
Solving Quadratic Equations by Factoring (2)

أحلل كلاًً ما يأتي:

1. $3n^2 + 5n - 2$
2. $2x^2 + 3x + 1$
3. $3x^2 - x - 2$
4. $5b^2 - 13b + 6$
5. $30x^2 - 25x - 30$
6. $21x^2 + 2x - 3$
7. $3x^2 + 8x - 3 = 0$
8. $3t^2 - 14t + 8 = 0$
9. $6x^2 - 5x - 4 = 0$
10. $24x^2 - 19x + 2 = 0$
11. $15k^2 + 4k - 35 = 0$
12. $6x^2 + 30 = 5 - 3x^2 - 30x$
13. $2k^2 - 5k - 18 = 0$
14. $12m^2 + 11m = 15$
15. $40n^2 - 70n + 15 = 0$

أعتمد الشكل المجاور، وأحلل السؤالين الآتيين تباعًا:

16. أجد مساحة المُستطيل المجاور بدالة x.
17. إذا كانت مساحة المُستطيل 40 وحدة مربعة، فأجد قيمة x.

رياضة:

18. إذا كان الافتران $24 + 8t + 16t^2 = 0$، عن متر المُثرب للوقت، فما الزمن الذي يستغرقه للوصول إلى سطح الماء؟

أكتشف الخطأ:

$x^2 - 2x - 24 = 2(x^2 - 2x - 24)$
$= 2(x - 6)(x + 4)$
حلّ المعادلات التربيعيّة بإكمال المُرَبَّع
Solving Quadratic Equations by Completing the Square

أجعل كلّ مقدارٍ ممّا يأتي مُرَبَّعًا كاملًّا، ثمّ أحلّل المُرَبَّع الكاملّ تلائيّ الحدود الناتج:

1. \(x^2 - 9x \)
2. \(x^2 + 10x \)
3. \(x^2 + 13x \)
4. \(x^2 - 18x \)
5. \(x^2 - \frac{1}{2} x \)
6. \(x^2 + 5x \)

أتّبِّع المُعادلات الآتيةّ بإكمال المُرَبَّع، وأقرّب إجابتي لأقرب جُزءٍ من عشرةٍ (إنّ لزمّ):

7. \(x^2 + 2x - 7 = 0 \)
8. \(x^2 = 3x + \frac{9}{4} \)
9. \(x^2 = 8x - 16 \)
10. \(x^2 - 11x = 0 \)
11. \(x^2 - 5x = 0.5 \)
12. \(5x^2 + 20x = 10 \)
13. \(2x^2 + 14 = 16x \)
14. \(4x = x^2 - 4x - 32 \)
15. \(x + 1 = 6x - x^2 \)

تبيّن البطاقات الآتيةّ خطوات حلّ المُعادلة: \(x^2 + 6x + 9 = 2 \) بطريقة إكمال المُرَبَّع. أُرِّب هذه البطاقاتّ من الحَدوة الأولى في الحلّ إلى الحَدوة الأخيرة.

أجمع 9 لطفيّ.
أطرح 7 من طرفيّ.
كتب 2 = 9 على صورة (x + 3)^2 = 2.
أخذ الجذر التربيعي لطرف المعادلة.
إجابتي لأقرب جزء من عشرة.

هندسة: بيّن الشكل المجاور مساحته 108 \(m^2 \). أُخُذ قيمة x، وأقرّب إجابتي لأقرب جزء من عشرة.

حديقة: حديقة زهور مُستطيلة الشكل طولُها 9 m وعرضُها 6 m. إذا كانت مساحتها مساوية لمساحة المُمار، فأَخُذ عرضّ المُمار.

(9 + x) m

6 m

9 m

x m
حل المعادلات التربيعية باستخدام القانون العام

Solving Quadratic Equations Using the Quadratic Formula

أحلل المعادلات الآتية بالقانون العام، وأقرب إجابتي لأقرب جزء من عشرة (إن لزم).

1. \(x^2 + 3x - 3 = 0\)
2. \(x^2 - 43x = -6\)
3. \(4x^2 - 20x = -25\)
4. \(5x + 6 - x^2 = 0\)
5. \(-6x - x^2 = 9\)
6. \(-2x^2 + 3x = -4\)
7. \(3x^2 - 5 + 14x = 0\)
8. \(2x^2 - 5x = 11\)
9. \(7 - 4x^2 = 16x\)
10. \(x^2 + 3x + 2 = 2\)
11. \(x^2 - 9 = 0\)
12. \(x^2 - 5x - 7 = 0\)
13. \(x^2 - 6x = 0\)
14. \((x - 4)^2 = 13\)
15. \(x^2 + 10x = 1\)

أحلل كل معادلة مما يأتي باستعمال أي طريقة، وأبرز سبب اختيار الطريقة.

16. أرضيتين: أرضيتين على شكل مثّل متساوي أضلاع طول قاعدته 1 m، وارتفاعه 2 m، إذا كانت مساحة الأرضيتين 130 m²، فما طول قاعدة المثلثي وما ارتفاعه؟

استعمل المساحة المعتادة في كل مما يأتي لأجِد قيمة x، وأقرب إجابتي لأقرب جزء من عشرة:

17. \(A = 150 \text{ cm}^2\)
18. \(A = 45 \text{ cm}^2\)

أكتشف الخطأ: حُل كريم معادلة تربيعية باستخدام القانون العام كما هو مبين أدناه. أكتشف الخطأ في حل كريم، وأصححه.

\[
x = \frac{-7 \pm \sqrt{(-7)^2 - 4(3)(-6)}}{2(3)}
\]

\[
= \frac{-7 \pm \sqrt{121}}{6}
\]

\[
x = \frac{2}{3} \quad \text{or} \quad x = -3
\]
حل المعادلات الخاصة

1. $24x^3 + 18x^2 = 0$
2. $x^3 - 2x^2 - 24x = 0$
3. $3x^5 = 192x^3$
4. $2x^3 - 20x^2 + 5x - 50 = 0$
5. $x^3 - 5x^2 + 6x = 30$
6. $16x^3 + 32x^2 - x - 2 = 0$
7. $x^3 + 512 = 0$
8. $3x^9 - 192x^6 = 0$
9. $3x + 1 = x^2 + 3x^3$
10. $2x^5 + 2x^4 - 144x^3 = 0$
11. $x^4 - 3x^2 - 28 = 0$
12. $16x^4 - 81 = 0$
13. $4x^{12} - 32x^7 + 48x^2 = 0$
14. $4x^3 - 7x^2 - 16x + 28 = 0$
15. $4x^4 - 25 = 0$

16. هندسةً: بني الشكل المجاور متوافقة مستطيلات حجمه 96 m^3.
17. أكتب معادلة مربعة متحيزة الاقتران الممثلة بيانياً في الشكل المجاور، وأبرز إجابتي.
18. حوض أسماك: بني الشكل المجاور حوضًا للأسماك على شكل متوافقة مستطيلات حجمه 12 dm^3. أوجد أبعاده.
أختِبِ معلوماتي قبلَ البدء بدراسة الوحدة، وفي حال عدم تأكّدي من الإجابة استعين بالمثال المحلول.

نظريّة فيثاغورس (الدرس 1)

أجدُ طول الضلع المجهول في كل مثلث قائم الزاوية ممّا يأتي (أقربّ إجابة لأقرب جزء من عشرة إذا لزم الأمر):

1.

2.

3.

4.

5.

6.

مثال: أجدُ طول الضلع المجهول في كل مثلث قائم الزاوية ممّا يأتي (أقربّ إجابة لأقرب جزء من عشرة إذا لزم الأمر):

1.

2.

3.

4.

5.

6.

للمعادلة حلان: 13 و 13، وبما أنّ الطول يجب أن يكون عددًا موجبًا، إذنّ طول الوتر 13 cm.

إذنّ، طول الضلع المجهول b يساوي 22.6 cm.

 تستعد لدراسة الوحدة: الهندسة الإحداثية
الوحدة 4: الهندسة الإحداثية

حل نظام مكون من معادلتين خطيتين بالحذف

أحلّ نظام المعادلات في كل مما يأتي بطريقة الحذف:

7. \[y = 2x + 1 \]
 \[y = -x + 4 \]

8. \[y + x = 2 \]
 \[3y + x = 0 \]

9. \[y = -0.4x - 1 \]
 \[y = x - 8 \]

مثال: أحلّ نظام المعادلات الآتي بطريقة الحذف:

\[3x + 2y = 18 \]
\[2x - y = 5 \]

الخطوة 1: أضرب المعادلة الثانية في 2

\[3x + 2y = 18 \]
\[4x - 2y = 10 \]

الخطوة 2: أجمع المعادلتين.

\[7x = 28 \]
\[x = 4 \]

الخطوة 3: أوحد ضر 4 بدلاً من \(x \) في إحدى المعادلتين لإيجاد قيمة \(y \).

\[2x - y = 5 \]
\[2(4) - y = 5 \]
\[8 - y = 5 \]
\[8 - 8 - y = 5 - 8 \]
\[-y = -3 \]
\[\frac{-y}{-1} = \frac{-3}{-1} \]
\[y = 3 \]

إذن، حلّ النظام هو (4, 3).
الوحدة 4: الهندسة الإحداثية

إيجاد ميل المستقيم (الدرس 2)

أُجِد وَمَيْلَ المُستقيمِ المَارٍ بِكُلِّ نَقْطَتَيْنِ مَمّا يأتي:

<table>
<thead>
<tr>
<th>رقم</th>
<th>القائمة</th>
<th>النقطتين</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(3, 4), (1, 0)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(−2, 5), (8, −3)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>(2, 1), (3, 1)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>(5, 6), (5, −1)</td>
<td></td>
</tr>
</tbody>
</table>

مثال: أُجِد وَمَيْلَ المُستقيمِ المَارٍ بالنَّقْطتينِ (2, 1), (6, 1).

صيغة الميل

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]

بالتعويض عن (\(x_1, y_1\)) في (1, 6) و (\(x_2, y_2\)) في (2, 1) و بـ (1, 2) بالتبسيط

\[m = \frac{2 - 6}{(-1) - 1} = \frac{-4}{-2} = 2 \]

إيجاد مُعادلة مُستقيم بصيغةِ الميل والمقطع (الدرس 2)

أُجِد مُعَادَلَة مُستقيم مَارٍ بالنَّقْطَةِ (4, 1−)، الذي ميَّة، بصيغة الميل والمقطع.

أُجِد مُعَادَلَة مُستقيم مَارٍ بالنَّقْطَتينِ (2, 1), (1, 2) بصيغة الميل والمقطع.

مثال: أُجِد مُعَادَلَة مُستقيم مَارٍ بالنَّقْطَةِ (1−), الذي ميَّة، بصيغة الميل والمقطع.

صيغة الميل والمقطع

\[y = mx + b \]

إيجاد ميَّة، بمثل:\[m = \frac{1}{4} \]

بالتعويض عن (\(y, x\)) في (1−), وبـ (1, 2) بالتبسيط

\[\frac{-1}{4} - 1 = \frac{1}{4} + b + \frac{-1}{4} \]

بجمع لطرف ي المُعَادَلة

\[b = \frac{-5}{4} \]

بالتبسيط

\[y = \frac{1}{4} x - \frac{5}{4} \]
كتابة معادلة المستقيم المار بنقطة معطاة ويوازي مستقيمًا معلومًا

أكتب بصيغة الميل والمقطع معادلة المستقيم المار بالنقطة المعطاة والموازي للمستقيم المعادل له في كلٍّ مما يأتي:

16) (−1, 5), \(y = \frac{1}{2} x - 10 \)

17) (2, −7), \(2y = 5x - 3 \)

18) (4, 8), \(x + 4y - 9 = 0 \)

19) (9, 3), \(2x - 7y + 1 = 0 \)

مثال:
أكتب بصيغة الميل والمقطع معادلة المستقيم المار بالنقطة (2, −2) والموازي للمستقيم معادلته في كلٍّ مما يأتي:

\(y = \frac{3}{2} x - 7 \)

الخطوة 1:
أجد ميل المستقيم المعطى.

ميل المستقيم المعلوم هو:

\(m = \frac{3}{2} \)

الخطوة 2:
أكتب معادلة المستقيم بصيغة الميل والمقطع باستخدام الميل والنقطة المعطاة.

\[
\begin{align*}
\text{أبدأ بصيغة الميل ونقطة:} \\
y - y_1 &= m(x - x_1) \\
y - 5 &= \frac{3}{2} (x - (-2)) \\
m &= \frac{3}{2}, (x_1, y_1) = (5, -2) \\
\text{أبسط وخصوصية التوزيع:} \\
y - 5 &= \frac{3}{2} (x + 2) \\
&= \frac{3}{2} x + 3 \\
y - 5 + 5 &= \frac{3}{2} x + 3 + 5 \\
y &= \frac{3}{2} x + 8
\end{align*}
\]

استعد لدراسة الوحدة: الهندسة الإحداثية

(الدرس 3)
المثال: أكتب بصيغة الميل والمقطع معادلة المستقيم المار بالنقطة (0، 4) والعمودي على المستقيم 1 + \(-8x + 4y\) = 0.

الخطوة 1: أوجد ميل المستقيم المعطى.

لإيجاد ميل المستقيم المعطى، نحتاج إلى كتابة المعادلة بصورة الميل والمقطع.

معادلة المستقيم المعطى:

\[4y = -8x + 1\]

أقسم طرف المعادلة على 4:

\[\frac{4y}{4} = -\frac{8x}{4} + \frac{1}{4}\]

أبسّط:

يُلكِّن ميل المستقيم هو: \(-2\).

الخطوة 2: أجد ميل المستقيم العمودي على المستقيم المعطى.

ميل المستقيم العمودي على المستقيم المعطى يساوي معكوس مقلوب العدد؛ أي: \(\frac{1}{-2}\). أكتب معادلة المستقيم بصيغة الميل والمقطع.

أبدأ بصيغة الميل ونقطة:

\[y - y_1 = m(x - x_1)\]

أعوض: (0، 4) أو (4، 0) في المعادلة:

يُلكِّن: \(y = \frac{1}{2}x - 2\).

الخطوة 3: أجد قيمة المتغير x.

إذا كان مستطيل، وكان: \(PN = 5x - 31\) و \(MQ = 2x + 11\).

 فإذا كان مستطيلاً، وكان: \(PQMN = 24\).

فأجد قيمة المتغير x.
المستطيل: هو متساوي أضلاع، وقطرانه متساويان، وزواياه قوائم.

مثال: إذا كان مستطيل، وكان QRST متسطيلًا، وكان 4 | 14 و Q x S = 6x + 5

فأجد قيمة المتغير x.

بما أن QRST مستطيل، فإن قطرين متطابقان، إذن أحد قيمة x التي تجعل

\[QS \cong RT \]

\[QS = RT \]

9x + 5 = 6x + 14

3x + 5 = 14

3x = 9

x = 3

حالات خاصة من متوازي الأضلاع (المعين)

المبرر في شكل المجاور المعيّن DEFG

إذا كانت m∠G = 118°. فأجد قياسات الزوايا المرتقبة في الشكل.

 pitfalls

\[m∠1 = m∠3 \]

\[m∠1 + m∠3 + 120° = 180° \]

2(m∠1) + 120° = 180°

2(m∠1) = 60°

m∠1 = 30°

ويتم فتح m∠1 = m∠3 = 30°.

ملاحظة: هو متوازي أضلاع جميع أضلاعه متساوية، وقطرانه متساويان، وكل قطرين من قطريه ينتميان الزوايا المتناظرة في الشكل.
وبحسب نظرية الزوايا المتقابلة في المَعين فإنَّ:

\[m\angle 1 = m\angle 2\]

و، وهذا يعني أنُّ:

\[m\angle 1 = m\angle 2 = m\angle 3 = m\angle 4 = 30°\]

حالات خاصة من متوازي الأضلاع (المربع) (الدرس 3)

يُبيّن الشكل المجاور المربع، إذا كان قطراه يتقاطعان في النقطة K، فأجد كلُّها ممّا يأتي:

26. \(m\angle RKS\)
27. \(m\angle QTK\)
28. \(m\angle QRK\)
29. K
30. Q
31. R

مثال: يُبيّن الشكل المجاور المربع، إذا كان 3 = 4. XWZY

26. \(m\angle WYZ\)

\(m\angle WYZ = 45°\)

قطر المربع ينصف الزاويتين الوارحل بين رأسهما

27. \(ZX = WY\)
28. \(ZX = 2WT\)
29. \(ZX = 2(3)\)
30. \(ZX = 6\)
المستوى الإحداثي

Distance in the Coordinate Plane

أُجد المسافة بين كل نقطتين ممّا يأتي وأقرب إجابي لأقرب جُزء من عشرة (إن لزم).

1. $A(1, 2), B(0, -7)$
2. $C(-1, -2), D(3, -4)$
3. $E(9, 1), F(-2, 3)$

بيٰب شكل المُجاور مواقع ثلاثة لاعبين في مباراة كرة الماء. أُجد:

4. المسافة بين A وB
5. المسافة بين B وC
6. المسافة بين C وA

محلة المثلثين المرسومان في المستوى الإحداثي المُجاور متطابقان؟ أُبرِز إجابي.

7. $FM = 3x - 4, MG = 5x - 26, FG =$
8. $FM = 5y + 13, MG = 5 - 3y, FG =$
9. $MG = 7x - 15, FG = 33, x =$
10. $FM = 8a + 1, FG = 42, a =$

إذا علمت أن النقطة هي مُنتصف C والنقطة هي مُنتصف AD، كما هو B مبنى في الشكل المُجاور، فأُجد إحداثيات B.
Distance between a Point and a Line

1. A**f**nd the distance between the point \(P(1, -3) \) and the line \(l: y = 2x - 2 \).

2. A**f**nd the distance between the point \(P(3, 5) \) and the line \(l: y = 2x - 2 \).

3. \(l: y = 3x - 4, P(0, 0) \)

4. \(l: y + 2x = 5, P\left(1, \frac{1}{2}\right)\)

5. \(l: x = -\frac{1}{2}, P\left(\frac{1}{2}, \frac{1}{2}\right)\)

6. \(y = x - 11 \)

7. \(y + 2x = 1 \)

8. \(2y + 5x - 7 = 0 \)

9. A**f**nd the distance between the points \(A \) and \(B \) in the diagram.

10. A**f**nd the area of the triangle \(ABC \) in the diagram.

11. A**f**nd the distance between the point \(P \) and the line \(l: y = 2x - 2 \).

(All measurements are in meters.)
الدرس 3

البرهان الإحداثي

Coordinate Proof

أرسمُ كُلًا من المثلثات الأتيَة في المستوى الإحداثي، وأحدّد إحداثيات رؤوس كل منها:

1. مُربَّع طول ضلعه $2a$، ويليقي قطراً في نقطة الأصل.
2. مثلث متوازي أضلاع طول قاعديه $2b$ وارتفاعه $2c$، وطول قاعدةه a.
3. مثلث متوازي الأضلاع طول قاعديه k ووحدة وحدة k.
4. مثلث متوازي الأضلاع طول قاعديه a.

أجد الإحداثيات المجهولة في كل شكل من الأشكال الأتيَة:

5. مستطيل
6. مُثلث
7. مُثلث
8. مثلث
9. مثلث
10. مثلث
11. مثلث
12. مثلث

أستخدم المعلومات المُعطاة في الشكل الآتي؛ لأثبت باستخدام البرهان الإحداثي أن

$\Delta OPQ \cong \Delta QRO$

$\Delta ODB \cong \Delta BDC$
أوراق الرسم البياني
أوراق الرسم البياني
أوراق الرسم البياني
أوراق الرسم البياني
أوراق مربعة
أوراق مربعة