أوراق العمل الداعمة

الرياضيات

الصف الثامن

الفصل الدراسي الأول
مقدمة

يعتبر هذا الكتيب مجموعة من أوراق العمل تتضمن نصيحة للعمل كل منها مفهومًا رياضيًا مختلفًا، وكل من هذه المفاهيم مرتبطة بدرس محدد من كتاب الطالب. أُعدّت هذه الفقرات لمساعدة الطلبة على متابعة التعلم العالمي بالطريقة التي تُعد أساسًا للتعليم العالمي أيضًا بأسلوب التعلم الذي درسنا في صفوف بعيدًا زمنيًا عن الهند العالمي.

تُبيّن أوراق العمل في هذا الكتيب بطريقة شابة لمنهجات "أسعد لدراسة الوحدة"؛ تسبيلاً على كل من المعلمين والمعلمات والطلبة لإعادة هذه البنية مألوفة لهم.

يحدد المعلم/ المعلمة من أوراق العمل الداعمة في كل جهة الفقرات المرتبطة بما سيقدم من نتائج الدرب في النهاية القادمة، ويطلب من الطلبة جميعًا مساهمة ملحوظًا، بوصفه اختبارًا تشخيصيًا لفهمنا تقييم الطلبة وتحديد مستوياتهم وامتيازاتهم.

بعد مناقشة أوراق العمل الداعمة وتبني الأفكار الناتجة الرابعة حولها ينتقل الطلبة إلى الفقرات المرتبطة بما سيقدم من نتائج الدرب في النهاية العالمية في مفهوم "أسعد لدراسة الوحدة" من كتاب التمرين، ويعلوونا داخل الغلفة الهادئة بهوية نكرة، مشردين بالمليلرة المعلولة.

المركز الوطني لتطوير المناهج
الوحدة 1

الاعداد الحقيقية

مربعات الأعداد الكاملة

(الدرس 1)

أوجد مربع كل عدد مما يأتي:

\begin{align*}
1 & : 7 \\
2 & : 11 \\
3 & : 10 \\
4 & : 29 \\
5 & : 91 \\
6 & : 4 \\
7 & : 25 \\
8 & : 81 \\
9 & : 36 \\
10 & : 16 \\
\end{align*}

مثال: أوجد مربع العدد 12

تعريف مربع العدد 12

أضرب

\[12^2 = 12 \times 12 \]

= 144

الجذر التربيعي للمربعات الكاملة

(الدرس 1)

أوجد الجذر التربيعي لكل عدد مما يأتي:

\begin{align*}
6 & : 4 \\
7 & : 25 \\
8 & : 81 \\
9 & : 36 \\
10 & : 16 \\
\end{align*}

مثال: أوجد الجذر التربيعي للمربع 100

أخلي العدد 100 إلى عوامله الأولية

أكن 100 كحاصل ضرب عددين متساوين

تعريف الجذر التربيعي

الجذر التربيعي للفور عددي الكامل هو ذلك العدد الكامل الذي مربعه يساوي المربع الكامل.
الوحدات

الإعداد الحقيقي

إمضاء قابلية قسمة (الدرس 1)

أرسم دائرة حول الأعداد التي تقبل القسمة على 2:

| 16 | 45 | 96 | 14 | 27 |

أرسم دائرة حول الأعداد التي تقبل القسمة على 3:

| 92 | 74 | 51 | 321 | 65 |

أرسم دائرة حول الأعداد التي تقبل القسمة على 5:

| 72 | 65 | 80 | 96 | 34 |

أرسم دائرة حول الأعداد التي تقبل القسمة على 10:

| 35 | 20 | 79 | 46 | 90 |

مثال:

(ب) أختار قابلية قسمة العدد 3491 على 3

مجموع منزلات العدد 3491 :

\[17 = 1 + 9 + 4 + 3\]

17 لا يقبل القسمة على 3

لذا فإن العدد 3491 لا يقبل القسمة على 3

(c) أختار قابلية قسمة العدد 2648 على 2

منزلة الآحاد هي 8 وهو عدد زوجي.

لذا فإن العدد 2648 يقبل القسمة على 2

(d) أختار قابلية قسمة العدد 475 على 10

منزلة الآحاد في العدد 475 هي 5

لذا فإن العدد 475 لا يقبل القسمة على 10

(c) أختار قابلية قسمة العدد 225 على 5

منزلة الآحاد في العدد 225 هي 5

لذا فإن العدد 225 يقبل القسمة على 5
الوحدة 1

الأعداد الحقيقية

عوامل العدد الكلي (درس 1)

أكتب في المربعات أزواج عوامل الأعداد الآتية جميعها:

15 22
2 16 18
17 45
3 9
18 81

مثال: أجد عوامل العدد 70

استعمل قواعد قابلية القسمة:

- العدد 70 يقبل القسمة على 2، وناتج القسمة هو 35، إذن: العددان 2 و35 عاملان لعدد 70
- العدد 70 يقبل القسمة على 5، وناتج القسمة هو 14، إذن: العددان 5 و14 عاملان لعدد 70
- العدد 70 يقبل القسمة على 10 وناتج القسمة هو 7، إذن: العددان 7 و10 عاملان لعدد 70
- إذن: عوامل العدد 70، هي 1، 2، 5، 7، 10، 14، 35، 70.
الوحدة الأولى والاعداد غير الأولية (الدرس 1)

أحد الأعداد إذا كان أولياً أم غير أولياً ما يأتي:

العدد 10 22
العدد 13 21
العدد 85 20
العدد 47 19

مثال: أحد الأعداد إذا كان أولياً أم غير أولياً ما يأتي:

العدد 31
العدد 76

العدد 31 يقبل القسمة على 1 وعلى نفسه أيضا، وهو يقبل القسمة على أي عدد غيرهما، إذن: هو عدد أولي.

العدد 76 يقبل القسمة على 1 وعلى نفسه أيضا، وهو يقبل القسمة على 2 لأن آخر أحاده عدد زوجي، إذا، يوجد للعدد 76 أكثر من عاملين. إذن: هو عدد غير أولي.

تحليل العدد إلى عوامله الأولية (الدرس 1)

أحلل كل عدد ما يأتي إلى عوامله الأولية:

العدد 23 84
العدد 24 132
العدد 25 102
العدد 26 180
العدد 27 310

مثال: أحلل العدد 92 إلى عوامله الأولية.

أقسم العدد 92 على أحد عوامله الأولياء.

2 | 92
2 | 46
23 | 23
1 | 1

إذن، تحليل العدد 92 إلى عوامله الأولياء هو: 2 × 2 × 23 = 92.
الوحدة 1

الأعداد الحقيقية

أولويات العمليات الجسائية (الدرس 1)

أوجد ناتج كل ما يأتي:

28.

29.

30.

31.

32.

33.

مثال: أوجد ناتج (7 + 6) × 8 ÷ 16

لحساب قيمة عبارة عدديّة تضمن أكثر من علامة، فإليّ أن أجري هذه العمليّات وفقًّاً لأولويّةً أوّلًا:

1. أبدأ بالأعمليات الموجودة داخل الأقواس.
2. ضرب وقسم بترتيب من اليسار إلى اليمين.
3. أجمع وطرح بترتيب من اليسار إلى اليمين.

16 ÷ 8 × (6 + 7) = 16 ÷ 8 × (13)

= 2 × 13

= 26

إذن: 26
الوحدة 1
الآعداد الحقيقية

حل معادلات الجمع والطرح (الدرس 3)

أَحَلُّ كُلّ مَعَادَلَة مِمَّا يَأْتِي، ثُمَّ أَتَحَقَّقُ مِن صِحَّةِ الْحَلِّ:

34 \(y + 4 = 10 \)
36 \(x + 2 = 10 \)
38 \(m - 7 = 9 \)

\[
\begin{align*}
35 & \quad m - 9 = 11 \\
37 & \quad 4 + y = 11 \\
39 & \quad s - 2 = 8 \\
\end{align*}
\]

مثال:
أَحَلُّ المَعَادَلَة 9 = 4 + \(x \), ثُمَّ أَتَحَقَّقُ مِن صِحَّةِ الْحَلِّ:

الطريقة 1: استعمال الحساب الذُّهني:

\(x + 4 = 9 \)

إِذَنْ: 5 = فِعْلُ الْمَعَادَلَة.

\(x = 9 - 4 \)

\(x = 5 \)

أَتَحَقَّقُ: حَلُّ الْمَعَادَلَة:

\(x + 4 = 9 \)

\(5 + 4 = 9 \)

المساوية صحيحة:

الهَوَّ وُطَرِحَ

طريقة 2: استعمال العلاقة بين الجمع والطرح:

ما معَمَلُ الْتَّرْحِ المصَّبَحُ؟

بِجُمْلَةِ الْجَمْعِ

إِذَنْ: 5 = فِعْلُ الْمَعَادَلَة.

\(x = 9 - 4 \)

\(x = 5 \)

أَتَحَقَّقُ: حَلُّ الْمَعَادَلَة:

\(x + 4 = 9 \)

\(5 + 4 = 9 \)

المُساواة صحيحة:

حل معادلات الضرب والقسمة (الدرس 3)

أَحَلُّ كُلّ مَعَادَلَة مِمَّا يَأْتِي، ثُمَّ أَتَحَقَّقُ مِن صِحَّةِ الْحَلِّ:

40 \(4n = 36 \)
41 \(7y = 56 \)
42 \(x \div 9 = 8 \)
43 \(m \div 4 = 12 \)
44 \(12 = 3x \)
45 \(y \div 5 = 4 \)
46 \(5m = 15 \)
47 \(11m = 22 \)
الوحدة 1

النماذج: أحلّ المعادلات الأربعة، ثمّ أتبع الناتج من صحة الحل:

أ) $8x = 32$

الطريقة 1: استعمال الجلب بين الضرب والقسمة:

$8x = 32$

$x = 32 ÷ 8$

إذن: $x = 4$

$8 \times 4 = 32$

المساويات صحيحة.

أ) $x ÷ 10 = 4$

الطريقة 1: استعمال العلاقة بين الضرب والقسمة:

$x ÷ 10 = 4$

$x = 4 \times 10$

إذن: $x = 40$

$40 ÷ 10 = 4$

المساويات صحيحة.

ب) $x ÷ 10 = 4$

النماذج: أحلّ المعادلات الأربعة، ثمّ أتبع الناتج من صحة الحل:
النسبة المطلوبة

48. تمثيل الأعداد الصحيحة على خط الأعداد

أمثل كل من الأعداد الصحيحة الأتي على خط الأعداد:
-5, 3, 9, -3

49. تمثيل الأعداد

0, -2, 4

مثال: أمثل الأعداد: 5, 0, 3 على خط الأعداد.
أرسم خط الأعداد، ثم أرسم نقطة عند موقع كل عدد صحيح.

قرن الأعداد الصحيحة

أرتّب الأعداد الصحيحة تصاعديًا في كل مما يأتي:

50. 4, -7, 3, -2, 0

51. -5, 8, 2, -6, -9, 1

أرتّب الأعداد الصحيحة تنزلًا في كل مما يأتي:

52. 17, -18, 20, -6, -23

53. 48, -50, 32, -14, -36, 30
الحداد الحقيقية

مثال: أُربي الاعداد: 2, 1, 5, 8 - تصاعديًا.

الطريقة 1: استعمال خط الاعداد.

أمثل الأعداد على خط الأعداد:

\[\begin{array}{cccccccc}
\text{العَدَدُ الأَصْغَرُ} & -8 & -2 & 1 & 5 & \text{العَدَدُ الأَكْبَرُ}
\end{array} \]

\[-8 > -2 > 1 > 5 \]

الطريقة 2: استعمال الإشارة والقيمة في المقارنة.

أقانت الاعداد السالبة، ثم الموجبة:

الاعداد السالبة هي: -2, -8, -2 < 2.

الاعداد الموجبة هي: 5, 1, 2 > 1.

بما أن الأعداد السالبة أصغر من الأعداد الموجبة، فإن ترتيب الأعداد تصاعديًا هو:

\[-8, -2, 1, 5\]

تحويل الكسر إلى كسر عشري (الدرس 4)

أحول كل كسر عادي أو عدد كسري بمثابة ينتمي إلى الصورة العشريّة:

\[\begin{array}{c}
54 \quad 5 \frac{3}{8} \\
56 \quad 12 \frac{1}{8} \\
58 \quad 4 \frac{1}{4} \\
55 \quad \frac{19}{20} \\
57 \quad 3 \frac{2}{5} \\
59 \quad \frac{7}{25}
\end{array} \]
الوحدة 1
الأعداد الحقيقية

مثال: أحوَّل كل كسر عادي أو عدد كسري بما يأتي إلى الصورة العشرية:

الطريقة 1: أستَعْمِل الكُسُور المُكافَئة.
أحْوَل الكُسر إلى كسر مَقَامه 10 أو 100 أو 1000 أَضْرِب البَسْط والمقام في 25

أُحَوِّل الكَسْر إِلى كَسْر مَقامٍ في 25
المُعَدَّد الكُلِّي الذي يَنتَجُ ضُرِّبَ
أُضْرِب كَسْر عَشْرٍ عَشْرٍ كُسُر عَشْرٍ عَشْرٍ

الطريقة 2: أستَعْمِل القِسمة الطَّويلة.
أَقْسِم البَسْط عَلى المَقَام.

1) عند قِسْمَةٍ 3 علَى 4 أَضْعَ الفاصلَة العَشرِيَّةٍ عِنْ يَمِينِ 3 وأَضِفْ أي عَدَدٍ من الأصفار.
2) أَضْعَ الفاصلَة العَشرِيَّة في ناتِج القِسْمَة. فَوْقَ الفاصلَة العَشرِيَّة في المُقْسَوم.

إِذْن:

\[
\frac{3}{4} = 0.75
\]

ب) \(8 \frac{9}{25}\)
أَضْرِب البَسْط والمقام في 4

\[
8 \frac{9}{25} = 8 + \frac{9 \times 4}{25 \times 4} = 8 + \frac{36}{100} = 8 \frac{36}{100} = 8.36
\]
المضاعف المشترك الأصغر (الدرس 6)

أوجد المضاعف المشترك الأصغر لكل مما يأتي:

60. 6, 8
61. 10, 12
62. 14, 15
63. 12, 36
64. 4, 10
65. 2, 13

مثال: أوجد المضاعف المشترك الأصغر للعددين 12، 8:

أبدأ بكتابة مضاعفات كل عدد، ثم أحدد أول مضاعف مشترك بينهما.

مضاعفات العدد 8: 8, 16, 24, ...
مضاعفات العدد 12: 12, 24, ...

لاحظ أن العدد 24 هو أول مضاعف مشترك بين العددين، إذن: المضاعف المشترك الأصغر (م.م.أ) للعدين 8, 12 هو العدد 24.

جمع الكسور وطرحها (الدرس 6)

أوجد ناتج كل مما يأتي في أبسط صورة:

66. \(\frac{2}{6} + \frac{1}{6}\)
67. \(\frac{3}{4} + \frac{1}{8}\)
68. \(\frac{7}{8} - \frac{3}{8}\)
69. \(\frac{1}{4} + \frac{3}{7}\)
70. \(\frac{5}{6} - \frac{1}{4}\)
71. \(\frac{7}{8} - \frac{3}{5}\)

مثال: أوجد ناتج كل مما يأتي:

\(\frac{-1}{3} + \frac{1}{4}\)

\(\frac{-1}{3} + \frac{1}{4} = \frac{-1 \times 4}{3 \times 4} + \frac{1 \times 3}{4 \times 3} = \frac{-4 + 3}{12} = \frac{-1}{12}\)
الآعداد الحقيقية

الوحدة الأولى

b) \(-\frac{1}{2} - \frac{1}{8} \)

\[
-\frac{1}{2} - \frac{1}{8} = -\frac{1 \times 4}{2 \times 4} + \frac{1 \times 1}{8 \times 1}
\]

\[
= -\frac{4 - 1}{8}
\]

\[
= -\frac{5}{8}
\]

النسبة المئوية (الدرس 8)

أكتب النسبة المئوية التي تمثل الجزء المظلم في كل ما يأتي:

مثال: أكتب النسبة المئوية التي تمثل الجزء المظلم في الشبكة المجاورة.

\[
\frac{53}{100} = 0.53
\]

تعريف النسبة المئوية

\[
= 53\%
\]
ражلُ المقدارين الجبرِيَّةِ

المقدار الجبرِيَّ و العدديَّ (الدرس 1)

اكتب مقداراً عددياً أو جبرِيَّاً يعبر عن كلٍّ من الجمل الآتية:

1. إضافة 23 إلى 15
2. طرح 9 من 15
3. ضرب 5 في عدد
4. قسمة عدد على 12
5. يزيد عدد على 49
6. أمثال

مثال: أكتب مقداراً عددياً أو جبرِيَّاً يعبر عن كلٍّ من الجمل الآتية:

المقدار الجبرِيَّ: $73 + n$، المقدار العددي: $7 \div 49$

النحوُر عن منطقٍ جيَّانِيِّ يمقدر جبرِيًّا (الدرس 1)

7. أسنان: يزيد عدد الأسنان الشُخص البالغ على عدد الأسنان الطفلة الفئيَّة بـ12 سناً. أكتب المقدار الجبرِيَّ الذي يعبر عن عدد الأسنان الشُخص البالغ. إذا كان عدد الأسنان الفئيَّة 20، فما عدد الأسنان الشُخص البالغ؟

8. أخطاء: لدى تجار لونٍ من الحَجَس، قطعه إلى قطع طول كل منها 20 cm أُعتبر عن عدد القطع التي حصل عليها بمقدار جبرِيًّا، ثم أستعمل هذا المقدار لحساب عدد القطع؛ إذا كان طول الالحو 120 cm.

9. حيوانات: إذا كانت الزهور بالحجر سناعتين فقط في اليوم، فأكتب مقداراً جبرِيَّاً يبين عدد الساعات التي تنامها الزهرة في عدد من الأيام، ثم أستعملها لحساب عدد الساعات التي تنامها الزهرة في أسبوع.
مثال:

نظام المعايير: تناولت هلا طبق سلطنة وقطعة حلوى، إذا كان في طبق السلطنة 50 شعراً حراريًّا، فاكتسب مقدارًا جبريًا يمثل عدد السُعُرات الأحرارية التي حصلت عليها هلا، ثم استُعمل المقدار الجبري لإيجاد العدد الكلي للسُعُرات التي حصلت عليها؛ إذا كان في قطعة الحلوى 150 شعراً.

ليحسب العدد الكلي للسُعُرات:

$$x + 50$$

أكتب المقدار الجبري

$$150 + 50$$

أعوِّض عن x بالعدد 150

$$200$$

أجمع

إذن: عدد السُعُرات الأحرارية التي حصلت عليها هلا يساوي 200 شعراً حراريًّا.

الحدود والمَعالَمات والَتَوابِع في المَقَادِير الجبريَّة

(الدرس 1)

أُبيِّن الحدود والمُعالَمات والتَوابِع في كل مقدار جبريًّا بما يأتي:

10 18y

11 3 – u^3

12 xy^2

13 5

14 $9x – 5y$

15 124
تحليل المقادير الجبرية

مثال:
أَمِّيِّزُ الْحُدودَ وَالْمُعاملاتِ وَالثَّابِتَ في كُلِّ مِقْدارٍ جَبْرِيٍّ مِمّا يَأْتي:

a) $17s + t + 3$

ب) $6xy + \frac{y}{4} + 10$

المُعاملُ هو العدد المضروب في متغير.

الحَدُّ الثّابِتُ هو حَدٌّ في المِقْدارِ الجَبْرِيِّ لا يَحْتَوي أَيَّ مُتَغَيِّرٍ.

جميع المقادير الجبرية وطرحها (الدرس 1)

أَكْتُبُ كُلَّ مِقْدارٍ جَبْرِيٍّ مِمّا يَأْتي في أَبْسَطِ صورَةٍ:

16) $6x + 2x$
17) $2.5y + 0.5y$
18) $3gf - gf$
19) $12yu^5 - 6yu^5$
20) $3.5x + 1.5x$
21) $7y + 4y$
22) $c^3r - 6c^3r$
23) $bd - 4bd$
الوحدة 2
تُحلِّيل المَقادِير الجِبْرِيَّةِ

مثال: أكتب كل مقدار جبري بما يأبَي في أبسط صورته:

a) $3x + 4x$

$$3x + 4x = (3 + 4)x = 7x$$

الحدودتان $3x$ و $4x$ متشابهتان. أجمع معامل الحدودين، ثم أضم x.

b) $4x - 3x$

$$4x - 3x = (4 - 3)x = x$$

الحدودان متشابهان. أطرح معامل الحدودين، ثم أضم x.

c) $7zt + 6zt$

$$7zt + 6zt = (7 + 6)zt = 13zt$$

الحدودتان $7zt$ و $6zt$ متشابهتان. أجمع معامل الحدودين، ثم أضم zt.

d) $9y^5 - y^5$

$$9y^5 - y^5 = (9 - 1)y^5 = 8y^5$$

الحدودتان $9y^5$ و y^5 متشابهتان. أطرح معامل الحدودين، ثم أضم y^5.

الحدود المتشابهة هي حدود تحتوي على المتغيرات نفسها، والأساس نفسهما.

<table>
<thead>
<tr>
<th>حدود غير متشابهة</th>
<th>حدود متشابهة</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, x^3, x^5</td>
<td>$x, 34x, -5x$</td>
</tr>
<tr>
<td>$17, xy, xy^3$</td>
<td>$2xy, -28xy, xy$</td>
</tr>
<tr>
<td>$w, 3z, 14m$</td>
<td>$7n^3, -5n^3, n^3$</td>
</tr>
</tbody>
</table>

يُمكنني أن أجمع أي حدَيْن متَشَابِهِن أو أطرحهما، وَذَلِلَّ يُجَمِّعُ معالَمَهُما أو طُرحُهما فَقَطْ وَإِبِقَائِهِ المَتَغَيِّرات.
المعادلات الخطية بناءً على المعادلة والمقدار الجبري (الدرس 1)

تمييز بين المعادلة والمقدار الجبري:
أحدّد أي مما يأتي يمثل معادلة وأنها يمثل مقداراً جبريًا:

1. $6z = 24$
2. $5y + 7 = 15$
3. $3x - 2$
4. $6y + 1 = 25$
5. $3m$
6. $5 - 2y$

مثال: أحدّد أي مما يأتي يمثل معادلة وأنها يمثل مقداراً جبريًا:

أ) $x + 17$

مقدار جبري؛ لأنها جملة رياضية تحتوي مجموعة من المتغيرات والأعداد تفصل بينها عمليات.
ولأنا تتضمن إشارة المساواة.

ب) $y + 3 = 15$

معادلة؛ لأنها جملةً رياضية تتضمن إشارة المساواة.

المعادلة جملةً رياضية تتضمن إشارة المساواة (=)، وقد تُتضمَّن أعدادًا x, y, b, \ldots مجهولة يُعبر عنها بأحرفٍ
المعادلات الخطية بمتغيرين

المثال: أكتب معادلة للتعبير عن كل ما يأتي:

مَثَلٌ:

أَكْتُبُ مُعَادَلَةً لِلَّتَّعْبيرِ عَنْ كُلٍّ مِمّا يَأْتي:

<table>
<thead>
<tr>
<th>قِسْمَةٌ x على 8 يُساوي 23</th>
<th>جَمْعُ 6 مع x يُساوي 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>y ÷ 8</td>
<td>x + 6</td>
</tr>
<tr>
<td>قِسْمَةٌ y على 8</td>
<td>x</td>
</tr>
<tr>
<td>y ÷ 8 = 23</td>
<td>x + 6 = 17</td>
</tr>
<tr>
<td>يُساوي 23</td>
<td>يُساوي 17</td>
</tr>
</tbody>
</table>

إِذَنْ، المَعَادَلَةُ هِيَ: 23 = 8

التعبير عن مسألة حيائية بمعادلة

مسافات: المسافة بين مدرسة حسن ومنزله 1280 m، قطع منها عددًا من الأمطار والباقي 1840 m.

أَرْزٌ: عند ناجي 50 من الأرز، وزَّعَهَا عَلى عَدَدٍ مِنَ الأَكْيَاسِ يَحْيَثُ تَكونُ كتَلةُ كُلٍّ كيِّسٍ 2 kg.

(الدرس 3)
المعادلات الخطية بِمتغيرين

مثال: خاطئ محمود عددًا من بنطاله، وخطأ زميله 5 بنطالًا، فأصبح مجموع المُنجز 13 بنطالًا. أعبر عن المُشكلة بِمعادلة.

الكلمات:
خاطئ محمود عددًا من بنطاله، وخطأ زميله 5 بنطالًا، فأصبح المُنجز

الرُموز:
$x + 5 = 13$

إذن، المعادلة التي تعبر عن المُشكلة هي: $x + 5 = 13$

مُعالَة

معكوَس العدد (درس 5)

أُجِد مَعْكوسِ الْعَدَدِ

<table>
<thead>
<tr>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>29</td>
<td>0</td>
<td>80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مثال:
أُجِد مَعْكوسِ الْعَدَدِ −5 (a)

العدد 5 يَقَعُ عَلَى بُعْدِ الْعَدَدِ 5 وَحَداتٍ إِلى يَمينِ الْعَدَدِ 0 وَحَداتٍ إِلى يَسارِ الْعَدَدِ 0

إذن، العدد 5 هو مَعْكوس العدد −5.
المعادلات الخطية بمتغيرين

إذن، معكوس العدد 4 هو العدد 4.

مثال: أكتب معادلة للمتغير عن كل مما يأتي:

أ) مقدّم العدد (الدرس 5)

أُجِدُ مَقْلوبَ كُلِّ عَدَدٍ مِمّا يَأْتي:

3 7

ب) مقدّم العدد

أُجِدُ مَقْلوبَ 12

بما أنّ 1 = 112 × 12، فإنّ 112 هو مُقلوبٌ 12.

إذا كان ناتج ضرب عددين يساوي كل منهما 1، فإنّ كلّ منهما يُسمى مُقلوبًا لآخر.

بما أنّ:

112 × 72 = 11 = 1

إذن: كلّ من 72 هو مُقلوبٌ لـ 2.

27 × 72
العمليات المتطابقة

التعبير بالرموز عن النقطة والمستقيم والقطعة المستقيمة والشعاع

(الدرس 1)

أسمي كلاًً ممّا يأتي، ثمّ أعبر عنه بالرموز:

1) P Q
2) L
3) V W
4) E K
5) G F H
6) C D E

مثال:

أسمي كلاًً ممّا يأتي، ثمّ أعبر عنه بالرموز:

- مستقيم؛ لأنّه يمتدّ في النجاحين من دون نهاية.

بالرموز: YZ

- شعاع؛ لأنّ له نقطة بداية، ويتمتّق في النجاح واحد من دون نهاية.

بالرموز: BA

- نقطة، النقطة

بالرموز: C

- قطعة مستقيمة؛ لأنّ لها نقطة بداية ونقطة نهاية.

بالرموز: LM
المثلثات المتطابقة

المستقيم والقطعة المستقيمة والساعة (الدرس 1)

أُسِّمِي كل زاوية مُرسومة بالخط المُنْطَق بِأَكْثَرَ من طْرَيقَةٍ في كُلّ مَيْتٍ يَأْتِي:

1. أَكْمِل الجمل الآتية باستخدام المفردات (حَادَة، مُنْفرَجَة، قاهِرة، مُستَقِيمَة):
 - الزاوية التي قياسها أَكْبَرُ مِن 90° وَأَصْغَرُ مِن 180° تُسَمَّى
 - الزاوية التي قياسها أَكْبَرُ مِن 90° وَأَقَلُّ مِن 180° تُسَمَّى
 - الزاوية التي قياسها 180° تُسَمَّى
 - الزاوية التي قياسها 90° تُسَمَّى

2. مَنْال: أُسِّمِي الزاوية بِثلاثٍ طِرَائِقِ مُخْتَلِفَة:
 - تُسَمِّي الزاوية بِدِلَالَة رأْسِها قَطْعًا شَرْطَ عَدْمِ امْتِراكِها مَع زِاوِيَةٍ أُخْرَى فِي الرَّأْسِ نَفْسِهِ.
 - تُسَمِّي الزاوية بِوَصْفِ BA
 - تُسَمِّي الزاوية بِوَصْفِ BC

3. أمثلة:
 - ∠B
 - ∠ABC
 - ∠CBA
المثلثات المتطابقة

العلاقة بين الزوايا (الدرس 1)

اغتمادًا على الشكل المجاور، أُسمى:

- زاويتين متكامبلتين.
- زاويتين متقابلتين بالرأس.
- زاويتين متجاورتين.
- زاويتين متنافيتين.

مثال: اغتمادًا على الشكل المجاور، أُسمى:

- زاويتين متقابلتين بالرأس:
 \(\angle CPK, \angle QPY \)
- زاويتين متكامبلتين:
 \(\angle CPE, \angle CPL \)
- زاويتين متجاورتين:
 \(\angle KPL, \angle LPY \)
تصنيف المثلثات حسب أطوال أضلاعها

المثلثات المتطابقة

أصنف كلًا مثالي من المثلثات الآتية حسب أطوال أضلاعها، وأبرز إجابتي:

مثالي:
أصنف كلًا مثالي من المثلثات الآتية حسب أطوال أضلاعها، وأبرز إجابتي:

إجابة:
المثلث متطابق الأضلاع؛ لأن أطوال أضلاعه الثلاثة متساوية.
المثلث متطابق الضلعين؛ لأنها يوجد ضلعين في المثلث لهما الطول نفسه (متطابقان).
المثلث مختلف الأضلاع؛ لأنها لا يوجد ضلعين في المثلث متطابقان.
٤- المثلثات المتطابقة

تصنيف المثلثات حسب قياسات زواياها

أصنف كلًا من المثلثات الآتية حسب قياسات زواياها، وأبرز إجابتي:

الدروس 3

أصنف كلًا من المثلثات الآتية حسب قياسات زواياها، وأبرز إجابتي:

- **28**
 - 38°
 - 71°
 - 71°

- **29**
 - 90°

- **30**
 - 35°
 - 120°
 - 25°

- **31**
 - 35°
 - 115°
 - 30°

- **32**
 - 90°

- **33**
 - 30°
 - 70°

مثال: أصنف كلًا من المثلثات الآتية حسب قياسات زواياها، وأبرز إجابتي:

- **a)**
 - المثلث مُنفرج الزاوية؛ لأنّ إحدى زواياه مُنفرجة، والزاوية الأخرىان حادتان.

- **b)**
 - المثلث حاد الزوايا؛ لأنّ زواياه الثلاث حادة.

- **c)**
 - المثلث قائم الزاوية؛ لأنّ إحدى زواياه قائمة، والزاويتان الأخرىان حادتان.